MY字典>历史百科>四库百科>象数一原

象数一原

六卷。清项名达(1789-1850)撰。项名达原名万准,字步来,号梅侣,仁和(今杭州)人。嘉庆二十一年(1816)举人,道光六年(1826)进士,未赴知县任,退职回乡,专事中算,著有《勾股六术》一卷(1825),后附《弧三角和较算例》,《三角和较术》一卷(1843),《开诸乘方捷术》一卷,上述三书合刻为《下学葊算术》。又著《象数一原》六卷,附《算律管新术》,戴煦遵嘱为之续成第七卷合刻刊出。《椭圆求周术》一卷,《图解》一卷为戴煦所补。项名达因董祐诚《割圆连比例图解》中所论割圆颇有疑问:“堆积既与率数合,何以有倍分无析分,倍分中弦率又何以有奇分无偶分,且弦矢线于圆中,于三角堆何与”,蓄是疑有年,直至1837年归自苕南,舟中偶念此,恍然有悟。即利用“三角垛数”,创立了“零整分递加”法,较割圆术更佳:“自来割圆术不离勾股,而得其象,未得其数,取数不无繁重,自有零整分递加后,象与数会”(自序)。此即《象数一原》由来。该书卷目为:卷一整分起度弦矢率论,卷二半分起度弦矢率论,卷三零分起度弦矢率论,卷四零分起度弦矢率论(戴煦补),卷五诸术通诠,卷六诸术明变(戴煦补加减表法),卷七椭圆求周图解(原本六卷,此卷为戴煦补之)。项氏用自己的方法求得一系列幂级数,有三角函数展开式,也有全弧的通弦展开为n分之一弧通弦的幂级数,对于后者他的结论是:全弧分为n分,不论n为奇为偶,其通弦总可以展为分弧通弦的幂级数,析分弦矢与倍分弦矢理本一贯。由此,他把董祐诚四个幂级数概括为两个,以此可推得董氏以及明安图的级数,显见项名达的表达式更具有一般性。项名达的工作对徐有壬、夏鸾翔颇有影响。《象数一原》版本有1888年上海赵氏《高斋丛刻》本,现藏浙江图书馆及中科院自然科学史研究所;《古今算学丛书》本;北京图书馆藏有1888年金匮华氏刊本与另一抄本。

猜你喜欢

  • 左传文苑

    八卷。明钟惺(1574-1624)撰。惺字伯敬,号退谷,竟陵(今湖北天门)人。万历三十八年(1610)进士,授行人,官至福建提学佥事。晚逃于禅。与同里谭元春评选《古诗归》、《唐诗归》,当时称为竟陵体。

  • 宣和论画杂评

    一卷。该书为《王氏画苑》所载,题曰宋徽宗皇帝御撰。该书内容与《宣和画谱》持论相合,盖为明人伪托之作,故《四库全书》未予著录,只存其目。

  • 佩文斋书画谱

    一百卷。清孙岳颁、宋俊业、王原祁、吴暻、王铨等奉康熙皇帝玄烨之命而编。此书成于康熙四十七年(1708)。为中国书画的大型类书。共分论书十卷(一至十卷)、论画八卷(十一至十八卷)、历代帝王书二卷(十九卷

  • 锦里耆旧传

    四卷。一名《成都理乱记》。宋句延庆撰。句延庆,字昌裔,籍贯不详,曾任荣州应灵县令。《锦里耆旧传》记载王氏,孟氏占据蜀地之事。《宋史·艺文志》记此书共八卷;陈振孙《书录解题》记载:“开宝三年,秘书丞刘蔚

  • 庭帏杂录

    二卷。明袁衷(生卒年不详)撰。袁衷字秉忠,东莞(属广东省)人。正统进士,授户部主事。历悟州府知府,改平乐府、永州府,所至公正廉明,百姓蒙其惠。袁衷尤长于诗文。著有《庭帏杂录》、《竹庭稿》等。此书是袁衷

  • 百论疏

    十六卷。唐代释吉藏撰。吉藏生平事迹详见《华严经游意》辞条。《百论》作者是印度僧人提婆菩萨所著,共二十品,每品各有百偈,故称《百论》。天亲菩萨释有《百论》。姚秦三藏法师鸠摩罗什译出前十品,共五十偈,仍称

  • 贞观公私画录

    见《贞观公私画史》。

  • 释疑论

    一卷。唐元行冲(生卒年不详)撰,清马国翰辑。行冲为字,名澹,以字显,河南洛阳(今河南洛阳)人。官至弘光馆学士,累封常山郡公,卒赠礼部尚书,谥曰献。新、旧《唐书》均有传。是书因张说驳奏其《类礼义疏》,使

  • 九朝谈纂

    无卷数。不著撰人名氏。此书内容为辑明太祖至明武宗九朝说部杂事,总为一书。其中分太祖为三册,成祖以下为七册,并于书前开列所采书目,共计五十余种,而卷内所辑书名尚有在所列书目以外者。大体类似于江少虞的《事

  • 隶辨

    八卷。清顾蔼吉(生卒年不详)撰。蔼吉字畹先,号天山,又号南原,长洲(今江苏吴县)人。以岁贡生充书画谱纂修官,任仪征教谕。善画山水,精缪篆八分书。顾氏《自序》云:“《隶辨》之作,窃为解经作也。字不辨,则